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A Causal Problem

Royalty /
Not Royalty
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' Female '

=> Nodes in a neural network represent causal relationships amongst inputs and outputs

Activation #2

G
O

#10,000

-> If we treat LLMs as Causal DAGs, we can use the suite of tools already available in the

field of causal inference to understand the internal mechanisms of an LLM
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A Causal Problem

=> Nodes in a neural network represent causal relationships amongst inputs and outputs
=> Technically there’s no confounding! We know all the causes (AKA parents) of a given node in a network

-> Therefore, we can perform arbitrary causal interventions in LLMs with relative ease

Challenge: Human-interpretable causal inference at this level is very difficult! It's not possible to understand
the mechanisms of billions of neurons individually. The causal problem here is to understand what’s the right

level of abstraction, how to define the “intervention”, and understand where to intervene.
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Mechanistic Interpretability

=> Area of research that seeks to understand the neural mechanisms that enable specific

behaviors in LLMs by leveraging causality-based methods."!

Importantly, mechanistic interpretability focuses on reverse-engineering model components
into human-understandable algorithms!¥

Intervene by adjusting the activation values, weights or inputs and examine the output

[3] Palit, V., Pandey, R., Arora, A., & Liang, P. P. (2023). Towards vision-language mechanistic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2856-2861). m ( O L U M B l A
[4] Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim, S., & Garriga-Alonso, A. (2023). Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information Processing Systems, 36, 16318-16352.
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-> What are examples of LLM interventions?
€ Circuit ablation

& ittering perturbations
€ Activation steering
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Mechanistic Interpretability

=> Area of research that seeks to understand the neural mechanisms that enable specific

behaviors in LLMs by leveraging causality-based methods.?!

Importantly, mechanistic interpretability focuses on reverse-engineering model components
into human-understandable algorithms!¥

Intervene by adjusting the activation values, weights or inputs and examine the output

-> What are examples of LLM interventions?

€ Circuit ablation — Replacing activation values to remove causal paths in the computation graph
€ Jittering perturbations

€ Activation steering
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Mechanistic Interpretability

=> Area of research that seeks to understand the neural mechanisms that enable specific

behaviors in LLMs by leveraging causality-based methods.?!

Importantly, mechanistic interpretability focuses on reverse-engineering model components
into human-understandable algorithms!¥

Intervene by adjusting the activation values, weights or inputs and examine the output

-> What are examples of LLM interventions?
€ Circuit ablation

¢ Jittering perturbations — add noise/variations to inputs or activations to measure robustness or

sensitivity, can be used in conjunction with other interventions
€ Activation steering
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Mechanistic Interpretability

=> Area of research that seeks to understand the neural mechanisms that enable specific

behaviors in LLMs by leveraging causality-based methods.?!

Importantly, mechanistic interpretability focuses on reverse-engineering model components
into human-understandable algorithms!¥

Intervene by adjusting the activation values, weights or inputs and examine the output

-> What are examples of LLM interventions?
€ Circuit ablation

& Jittering perturbations

€ Activation steering — adjusting the existing values of the activation vector with new values to steer
model generation towards a specific target

[3] Palit, V., Pandey, R., Arora, A., & Liang, P. P. (2023). Towards vision-language mechanistic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2856-2861). Gb ( O l_ U M B l A
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Representations vs. Circuits

Representations

Understanding how properties of the input are
represented internally through studying

activation values

Circuits
Understanding the algorithms encoded in the

weights by which representations are

computed and used
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Residual Stream

logits => Transformer-based models are comprised of blocks of attention
unenIbe p layers followed by multi-layer perceptron (MLP) layers!"
‘Y, -> Attention heads can be understood as independent operations, each
,—@ Ti+2 outputting results (AKA activation values) that are added into the
MLP T residual stream!?!
%D => Residual stream is high-dimensional vector space made up of the
) Tit1
A l[z L 7 sum of the output of all previous layers and the original input
1
TU £ £ embedding, can be thought of as a “communication channel”®?
Ly
t o
embed
T
tokens

[1]Turner, A., Thiergart, L., Udell, D., Leech, G., Mini, U., & MacDiarmid, M. (2023). Activation addition: Steering language models without optimization. arXiv preprint arXiv:2308.10248. m ‘ O L U M B l A

[2]Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., ... & Olah, C. (2021). A mathematical framework for transformer circuits. Transformer Circuits Thread, 1, 1.



Residual Stream

-> Every attention head/MLP block independently reads from the residual stream through linear
projection and performs another linear projection to the output before adding to “write” its output
back into the residual stream !

=  We can split the residual stream into subspaces, and we believe these subspaces can correspond

to interpretable “concepts”

residual stream

The residual Layers can interact by

stream is high writing to and reading

dimensional, from the same or

and can be overlapping

divided into subspaces. If they

different | subspace  \rite to and read from

subspaces. ‘ disjoint subspaces,
they won't interact.
Typically the spaces
only partially overlap.

[1]Turner, A., Thiergart, L., Udell, D., Leech, G., Mini, U., & MacDiarmid, M. (2023). Activation addition: Steering language models without optimization. arXiv preprint arXiv:2308.10248. m ‘ O L U M B l A

[2]Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., ... & Olah, C. (2021). A mathematical framework for transformer circuits. Transformer Circuits Thread, 1, 1.



Linear Representation Hypothesis
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The Linear Representation Hypothesis

Every vector of activations a € R can be represented as a linear combination a = Zle «;V; where
V = {v1,va,..., vk} is such that k > d, span(V) = R? and |(v;,v;)| < e. Moreover, every v;
corresponds to a feature of the data and «; corresponds to the magnitude or importance of that
feature present in the data.
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The Linear Representation Hypothesis

Every vector of activations a € R? can be represented as a linear combination a = Zle a;V; where

= {v1,V2,...,Vg} is such that k > d, span(V) = R? and |(v4,v;)| < e. Moreover, every v;
corresponds to a feature of the data and «; corresponds to the magnitude or importance of that
feature present in the data.

A feature/concept is “any factor of variation that can be changed in isolation”.
e English — French
e Male — Female
e Love — Hate
e Contemporary Prose — Shakespearean Prose

Activation vectors can be broken down into combinations of these various feature directions.
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The Linear Representation Hypothesis

Every vector of activations a € R can be represented as a linear combination a = Zle «;V; where

= {v1,V2,...,Vg} is such that k > d, span(V) = R? and |(v4,v,)| < €. Moreover, every v;
corresponds to a feature of the data and «; corresponds to the magnitude or importance of that
feature present in the data.

However, the number of features we want to encode (k) in an LLM is much higher than the number
of basis vectors (d). We have an overcomplete basis.
e To get around this, LLMs relax the definition of orthogonality to be within ¢ of 90 degrees,
which dramatically increases the number of concepts we could encode.
e Because of this, the activation vector a can unintentionally activate multiple feature
directions. One result of this hypothesis is we assume LLMs represent features sparsely so

there is less overlap of features for any given input.
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If we can find the direction vector for each concept, what can we do with it?

=> Guided generation
€ Steer the model towards generating text that has more or less of a specific feature.
=> Understanding LLMs mechanistically
€ \What is the structure of information within an LLM? How are related topics stored within this
representation space?
=> Auditing the model
€ Know when certain features are being activated, such as features having to do with sensitive

demographic information.
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Finding Feature Directions
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Steering Vectors

=> Method to control or guide the behavior of the model by adjusting the internal states or

activations of the model
-> Goal: add some vector to the internal model activations at a given layer to influence the

output in a specific way

Prompt given to the model "
I hate you because
GPT-2
I hate you because you are the most disgusting thing I have ever seen.

GPT-2 + "Love" vector

I hate you because you are so beautiful and I want to be with you forever.

Y

lesswrong.com/posts/5spBue2z2tw4JuDCx/steering-apt-2-xI-by-adding-an-activation-vector#14 _Insert_the steering vector at a_different position
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https://www.lesswrong.com/posts/ndyngghzFY388Dnew/implementing-activation-steering
https://www.lesswrong.com/posts/5spBue2z2tw4JuDCx/steering-gpt-2-xl-by-adding-an-activation-vector#14__Insert_the_steering_vector_at_a_different_position_

Finding Steering Vectors with ActAdd

Prompt 1:
e.g. "l love talking
about weddings" P

Prompt 2:
e.g. "l hate talking

Steering
vector

about weddings" y

ting : forward record diff
contrasting embed . g
pass activations activations
prompts

Turner, A. M., Thiergart, L., Leech, G., Udell, D., Vazquez, J. J., Mini, U., & MacDiarmid, M. (2023). Activation addition: Steering language models without optimization.
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Demo Notebook

https://colab.research.google.com/drive/1swrOQOOVAIMAWMI1FUvrm2610Ix4L XcVKoJ?usp=sharing
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https://colab.research.google.com/drive/1swr9OVAtmAWM1FUvrm2610lx4LXcVKoJ?usp=sharing

Issues with activation addition

->  We will always find some vector with ActAdd, even if the feature does not necessarily exist within
the LLM (i.e. the vector we get might not have anything to do with the feature we’re interested in).
=> There’s a lot of potential for confounding features
€ E._g. If we have a lot of sentences about love, a lot of sentences about hate, we may have just
found the positive/negative sentiment instead of love/hate.
€ E._g. If we have a bunch of famous husband/wife pairs. We may have just found the
male/female direction vector instead of the spousal vector.
=> This also isn’t a very scalable method; finding each feature vector requires a lot of work to curate a

large dataset with the desired properties.
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Issues with activation addition

->  We will always find some vector with ActAdd, even if the feature does not necessarily exist within
the LLM (i.e. the vector we get might not have anything to do with the feature we’re interested in).
=> There’s a lot of potential for confounding features
€ E._g. If we have a lot of sentences about love, a lot of sentences about hate, we may have just
found the positive/negative sentiment instead of love/hate.
€ E._g. If we have a bunch of famous husband/wife pairs. We may have just found the
male/female direction vector instead of the spousal vector.
=> This also isn’t a very scalable method; finding each feature vector requires a lot of work to curate a
large dataset with the desired properties.

- What can we use instead?
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Issues with activation addition

->  We will always find some vector with ActAdd, even if the feature does not necessarily exist within
the LLM (i.e. the vector we get might not have anything to do with the feature we’re interested in).
=> There’s a lot of potential for confounding features
€ E._g. If we have a lot of sentences about love, a lot of sentences about hate, we may have just
found the positive/negative sentiment instead of love/hate.
€ E._g. If we have a bunch of famous husband/wife pairs. We may have just found the
male/female direction vector instead of the spousal vector.
=> This also isn’t a very scalable method; finding each feature vector requires a lot of work to curate a
large dataset with the desired properties.

=> What can we use instead? ... Sparse autoencoders!
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Sparse Autoencoders (SAEs) for Feature Learning

— => Sparse autoencoders are trained to
SAE Activations

reconstruct their input data
Trains on a combination of reconstruction

loss and L1 loss which induces sparsity

Encoder Decoder
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https://www.lesswrong.com/posts/CJPqwXoFtgkKPRay8/an-intuitive-explanation-of-sparse-autoencoders-for

Sparse Autoencoders (SAEs) for Feature Learning

LLM Activations

SAE Activations

.
. .

Encoder

Decoder

SUOIEANOY INTT

-

Sparse autoencoders are trained to
reconstruct their input data

Trains on a combination of reconstruction
loss and L1 loss which induces sparsity
This sparsity is important for finding the
decomposable feature representations, thus
reducing feature confounding

We can train SAEs on lots of unsupervised
text data and find multiple features at once,

which addresses the scalability issue

&2 COLUMBIA


https://www.lesswrong.com/posts/CJPqwXoFtgkKPRay8/an-intuitive-explanation-of-sparse-autoencoders-for

SAEs can find highly interpretable features

=> Use auto-interpretability for learning what each feature corresponds to

€ Find out which inputs activate the feature highly and use an LLM to understand the

common theme between all inputs

=> Learn a dictionary of {SAE feature: steering vector} using the decoder matrix

Language Model Sparse Autoencoder Feature Dictionary
N
i Activation Vector Feature | Meaning Interpretability
J H( Embedding ) . Eerp
< D Encoder matrix
(0 <k = N Transformer Blocks ) (tied with decoder) k-0001 | Words ending in “ing" | 0.56

Text Corpus /o ) Add bias + apply ReLU /\
\__/ ( OmOOmOO000 ) sparse feature coefficients / k-xxxx |
w Decoder matrix (dictionary) k-2048 | Chemistry terms 0.38
Reconstructed activation vector i
J c. Interpret the resulting

b. Learn a feature dictionary using an autoencoder dictionary features
that learns to represent activation vectors as a
sparse linear combination of feature vectors.

C Unembedding i)

a. Sample activations
from a language model

Cunningham, H., Ewart, A., Riggs, L., Huben, R., & Sharkey, L. (2023). Sparse autoencoders find highly interpretable features in language models. m ‘ O L U M B l A



Gemma Scope + Neuropedia API

@] Neuronpedia

Google DeepMind x Neuronpedia

understanding the internals of Al models.

Neuronpedia is an open platform for interpretability research.
Explore, steer, and experiment on Al models.

Getting Started

phrases related to Q8 sessions or dislogues
invalving opinions and discussions
Explore Visually 3065 significant avents or miestones

6001 mentions of significant events or milestones

Each dot in the visualization represents an idea or concept that the model
has learned. The dots, of are arranged in a fully interactive
UMAP graph: you can zoom, and select dots to see details. You can
also filter features by specific terms. words related to controversy or scandal

references to various conspiracy theories
Docs: Features /¥ Demo

10443 events or milestones

descriptions of various incidents or events

773 mentions of various forms of art

797 phrases related to policies and government
decisions

1052 mention of the rock band "The Dead” or
related terms associated with the band

GEMMA-2-28 GEMMASCOPE-RES-16K

Residual Stream - 16} Artayers

| ; ] a Test Instantl

Display a menu

Neuronpedia lets you se
i At CAE fabiionie

https://www.neuronpedia.org

Gemma Scope: an open
suite of sparse autoencoders
for Gemma 2 9B and 2B
Neuronpedia API:
Interpretability API for

various open source LLMs
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https://www.neuronpedia.org

Demo Notebook

https://colab.research.google.com/drive/1g 3ASXrWY{fO1rcvMiKCrAl nCaVTcFs6?usp=sharing
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https://colab.research.google.com/drive/1g_3A5XrWYfO1rcvMiKCrAI_nCaVTcFs6?usp=sharing

Using Feature Directions
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Guided Generation

=> Other common forms of controlling or steering generation include fine-tuning and

prompt engineering

Data requirements

Robustness to
inputs

Requires internal
access to model

Prompt engineering/ | Low Low No
In-context learning

Activation steering Low High Yes
Fine-tuning High High Yes

&2 COLUMBIA



Guided Generation

=> Subramani et al. (2022) & Hernandez et al. (2023) employ steering vectors that are added to
the forward pass of GPT-2 with the goal of modifying generation; the former found steering
vectors like “love”, “hate”, etc. while the latter used steering vectors for fact-editing

=> Merullo et al. (2023) observed the linearity of transformer representations; were able to find a
steering vector for country capitals; the vector added to the residuals to convert Poland to
Warsaw could be used to transform China into Beijing

-> Elhage et al. (2022) showed that Othello-GPT can be intervened on with linear activation
vectors that represented to, in essence, represent “a black piece is here and not a white

piece”.
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Guided Generation

=> Turner et al. (2023)
€ Found multiple linear steering vectors including “love” (attention layer 6), “intent to
praise” (attention layer 6), “conspiracy” (attention layer 23), “want to die” (attention layer
10), “anger” (attention layer 20), and some odd ones like “talking about weddings”
(attention layer 20), “Dragons live in Berkeley” (attention layer 15), and “the Eiffel tower
is in Rome” (attention layer 24)
€ Found that adding embedding vectors isn’t as effective as adding steering vectors
- Park et al. (2023) found language concepts that allow translation (English=>French,

French=German, French=Spanish, and German=Spanish)
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Structure within LLMs

Park, K., Choe, Y. J.

Language Models.

, Jiang, Y., & Veitch, V. (2024). The Geometry of Categorical and Hierarchical Concepts in Large

10.0 plant = animal vs mammal = bird

reptile

7.5

5.0

2.5

mammal = bird

0.0
=25

-5.0
N plant

E animal
mammal
. bird

=75

-10.0
-10.0 -7.5 -50 -25 0.0 25 5.0 7.5 10.0

(b) Hierarchy is encoded as orthogonality in Gemma. (c) Categorical concepts are represented as simplices in Gemma.

Figure 1: In large language models, categorical concepts are represented as simplices in the represen-
tation space. Further, hierarchically related concepts (such as animal and mammal = bird) live in
orthogonal subspaces. The top panel illustrates the structure, the bottom panels show the measured
representation structure in the Gemma LLM. See Section 5 for details.
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Structure within LLMs

Engels, J., Liao, |., Michaud, E. J., Gurnee, W., & Tegmark, M. (2024). Not All Language Model Features Are Linear.

Days of the Week Months of the Year Years of the 20th Century
e Monday . ® Friday e January . October % F'
g, S gy | ey AR ’ oo | 3 *1900 1950 1999
e Thursday o3l Other e April | ¢ %% .° Other ?‘. .
. May 3
. Ju:qe t ‘I L '.p:‘ ;
m ;{' m {Auu}t;ust ‘ Pl <F i r;,.:.'-.- »
7)) . 1 7, September ° " ..‘- o
X ou ool < . v’ y
X w» - 2 X of - . \ O
© .,.é_\.,"- © k ! 20 é g\ “ .;
< _‘$ Y., <C &_? “ < -~ L S
Q v | em | - R
* WG o i
s . S, ) 'w » P .
. o o' A s
:& Ox A
PCA axis 2 PCA axis 2 PCA axis 3

Figure 1: Circular representations of days of the week, months of the year, and years of the 20th
century in layer 7 of GPT-2-small. These representations were discovered via clustering SAE
dictionary elements, described in Section 4. Points are colored according to the token which created
the representation. See Fig. 12 for other axes and Fig. 13 for similar plots for Mistral 7B.
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Auditing LLMs

French = Spanish male = female
i I’ I |IIIIII :
-04 -0.2 0.0 0.2 0.4 —0.2 —=0.1 0.0 0.1
French Spanish

Figure 4. The subspace representatlon AW acts as a linear probe
for W. The h1stograms show Jyy A(z57) vs. Fyy A(x5°) (left) and
g)\(xfr) VS. Yz )\(ac °) (right) for W = French=>Spanish
and Z = male=>female, where {z;"} and {z5°} are random
contexts from French and Spanish Wikipedia, respectively. We
also see that yz does not act as a linear probe for W, as expected.

Park, K., Choe, Y. J., & Veitch, V. (2023). The linear representation hypothesis and the geometry of large language models.

-=> We can use these feature

directions as linear probes

-> We project the activations of

our input onto the direction
vector and look at the
magnitude of the resultlng
projection '
a = input
b = feature direction
|a,| = magnitude of the

feature present in our
input

ai
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Some Other Good Resources

-> LeSSVVFOﬂg b|Og: https://www.lesswrong.com/

=>» Transformer Circuits: nttps:/transformer-circuits.pub/

-=> Neel Nanda’s b|Og: https://www.neelnanda.io/
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Questions?
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Appendix
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Finding Steering Vectors with ActAdd

=> Use a package like TransformerLens Or baukit

from baukit import Trace

layer id = 5
module = model.layers[layer id]
with Trace (module) as ret:

= model ("Love")

act love = ret.output

= model ("Hate")

act hate = ret.output
steering vec = act_love-act hate
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