
Intro to Mechanistic Interpretability
COMS6998: Frontiers of ML 

Sweta Karlekar



Overview

➔ Background

➔ Linear Representation Hypothesis 

➔ Finding Feature Directions

➔ Using Feature Directions 



Background



A Causal Problem

Large Language Models Causal DAGs

➔ Nodes in a neural network represent causal relationships amongst inputs and outputs 

➔ If we treat LLMs as Causal DAGs, we can use the suite of tools already available in the 

field of causal inference to understand the internal mechanisms of an LLM



A Causal Problem

➔ Nodes in a neural network represent causal relationships amongst inputs and outputs 

➔ Technically there’s no confounding! We know all the causes (AKA parents) of a given node in a network 

➔ Therefore, we can perform arbitrary causal interventions in LLMs with relative ease

Challenge: Human-interpretable causal inference at this level is very difficult! It’s not possible to understand 

the mechanisms of billions of neurons individually. The causal problem here is to understand what’s the right 

level of abstraction, how to define the “intervention”, and understand where to intervene.

Large Language Models Causal DAGs



➔ Area of research that seeks to understand the neural mechanisms that enable specific 

behaviors in LLMs by leveraging causality-based methods.[3]

➔ Importantly, mechanistic interpretability focuses on reverse-engineering model components 

into human-understandable algorithms[4] 

       Intervene by adjusting the activation values, weights or inputs and examine the output 

➔ How do we adjust the activation values? 

◆ Interchange interventions (AKA activation patching) 

◆ Activation steering 

◆ Jittering perturbations 

Mechanistic Interpretability

[3] Palit, V., Pandey, R., Arora, A., & Liang, P. P. (2023). Towards vision-language mechanistic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2856-2861).
[4] Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim, S., & Garriga-Alonso, A. (2023). Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information Processing Systems, 36, 16318-16352.



Mechanistic Interpretability

➔ Area of research that seeks to understand the neural mechanisms that enable specific 

behaviors in LLMs by leveraging causality-based methods.[3]

➔ Importantly, mechanistic interpretability focuses on reverse-engineering model components 

into human-understandable algorithms[4] 

       Intervene by adjusting the activation values, weights or inputs and examine the output 

➔ What are examples of LLM interventions? 

◆ Circuit ablation

◆ Jittering perturbations

◆ Activation steering

[3] Palit, V., Pandey, R., Arora, A., & Liang, P. P. (2023). Towards vision-language mechanistic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2856-2861).
[4] Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim, S., & Garriga-Alonso, A. (2023). Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information Processing Systems, 36, 16318-16352.



Mechanistic Interpretability

➔ Area of research that seeks to understand the neural mechanisms that enable specific 

behaviors in LLMs by leveraging causality-based methods.[3]

➔ Importantly, mechanistic interpretability focuses on reverse-engineering model components 

into human-understandable algorithms[4] 

       Intervene by adjusting the activation values, weights or inputs and examine the output 

➔ What are examples of LLM interventions? 

◆ Circuit ablation — Replacing activation values to remove causal paths in the computation graph

◆ Jittering perturbations

◆ Activation steering

[3] Palit, V., Pandey, R., Arora, A., & Liang, P. P. (2023). Towards vision-language mechanistic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2856-2861).
[4] Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim, S., & Garriga-Alonso, A. (2023). Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information Processing Systems, 36, 16318-16352.



Mechanistic Interpretability

➔ Area of research that seeks to understand the neural mechanisms that enable specific 

behaviors in LLMs by leveraging causality-based methods.[3]

➔ Importantly, mechanistic interpretability focuses on reverse-engineering model components 

into human-understandable algorithms[4] 

       Intervene by adjusting the activation values, weights or inputs and examine the output 

➔ What are examples of LLM interventions? 

◆ Circuit ablation

◆ Jittering perturbations — add noise/variations to inputs or activations to measure robustness or 

sensitivity, can be used in conjunction with other interventions

◆ Activation steering

[3] Palit, V., Pandey, R., Arora, A., & Liang, P. P. (2023). Towards vision-language mechanistic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2856-2861).
[4] Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim, S., & Garriga-Alonso, A. (2023). Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information Processing Systems, 36, 16318-16352.



Mechanistic Interpretability

➔ Area of research that seeks to understand the neural mechanisms that enable specific 

behaviors in LLMs by leveraging causality-based methods.[3]

➔ Importantly, mechanistic interpretability focuses on reverse-engineering model components 

into human-understandable algorithms[4] 

       Intervene by adjusting the activation values, weights or inputs and examine the output 

➔ What are examples of LLM interventions?  

◆ Circuit ablation

◆ Jittering perturbations 

◆ Activation steering — adjusting the existing values of the activation vector with new values to steer 

model generation towards a specific target

[3] Palit, V., Pandey, R., Arora, A., & Liang, P. P. (2023). Towards vision-language mechanistic interpretability: A causal tracing tool for blip. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 2856-2861).
[4] Conmy, A., Mavor-Parker, A., Lynch, A., Heimersheim, S., & Garriga-Alonso, A. (2023). Towards automated circuit discovery for mechanistic interpretability. Advances in Neural Information Processing Systems, 36, 16318-16352.



Representations vs. Circuits

Understanding the algorithms encoded in the 

weights by which representations are 

computed and used

Understanding how properties of the input are 

represented internally through studying 

activation values

Representations Circuits



Residual Stream

➔ Transformer-based models are comprised of blocks of attention 

layers followed by multi-layer perceptron (MLP) layers[1]

➔ Attention heads can be understood as independent operations, each 

outputting results (AKA activation values) that are added into the 

residual stream[2]

➔ Residual stream is high-dimensional vector space made up of the 

sum of the output of all previous layers and the original input 

embedding, can be thought of as a “communication channel”[2]

[1]Turner, A., Thiergart, L., Udell, D., Leech, G., Mini, U., & MacDiarmid, M. (2023). Activation addition: Steering language models without optimization. arXiv preprint arXiv:2308.10248.
[2]Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., ... & Olah, C. (2021). A mathematical framework for transformer circuits. Transformer Circuits Thread, 1, 1.



Residual Stream

➔ Every attention head/MLP block independently reads from the residual stream through linear 
projection and performs another linear projection to the output before adding to “write” its output 

back into the residual stream [2]

➔ We can split the residual stream into subspaces, and we believe these subspaces can correspond 

to interpretable “concepts” 

[1]Turner, A., Thiergart, L., Udell, D., Leech, G., Mini, U., & MacDiarmid, M. (2023). Activation addition: Steering language models without optimization. arXiv preprint arXiv:2308.10248.
[2]Elhage, N., Nanda, N., Olsson, C., Henighan, T., Joseph, N., Mann, B., ... & Olah, C. (2021). A mathematical framework for transformer circuits. Transformer Circuits Thread, 1, 1.



Linear Representation Hypothesis



The Linear Representation Hypothesis



The Linear Representation Hypothesis

A feature/concept is “any factor of variation that can be changed in isolation”. 

● English → French

● Male → Female 

● Love → Hate 

● Contemporary Prose → Shakespearean Prose

Activation vectors can be broken down into combinations of these various feature directions.



The Linear Representation Hypothesis

However, the number of features we want to encode (k) in an LLM is much higher than the number 

of basis vectors (d). We have an overcomplete basis. 

● To get around this, LLMs relax the definition of orthogonality to be within 𝜖 of 90 degrees, 

which dramatically increases the number of concepts we could encode. 

● Because of this, the activation vector a can unintentionally activate multiple feature 

directions. One result of this hypothesis is we assume LLMs represent features sparsely so 

there is less overlap of features for any given input. 



If we can find the direction vector for each concept, what can we do with it? 

➔ Guided generation 

◆ Steer the model towards generating text that has more or less of a specific feature.  

➔ Understanding LLMs mechanistically 

◆ What is the structure of information within an LLM? How are related topics stored within this 

representation space?  

➔ Auditing the model 

◆ Know when certain features are being activated, such as features having to do with sensitive 

demographic information. 



Finding Feature Directions



Steering Vectors

➔ Method to control or guide the behavior of the model by adjusting the internal states or 
activations of the model

➔ Goal: add some vector to the internal model activations at a given layer to influence the 
output in a specific way

https://www.lesswrong.com/posts/ndyngghzFY388Dnew/implementing-activation-steering
https://www.lesswrong.com/posts/5spBue2z2tw4JuDCx/steering-gpt-2-xl-by-adding-an-activation-vector#14__Insert_the_steering_vector_at_a_different_position_

https://www.lesswrong.com/posts/ndyngghzFY388Dnew/implementing-activation-steering
https://www.lesswrong.com/posts/5spBue2z2tw4JuDCx/steering-gpt-2-xl-by-adding-an-activation-vector#14__Insert_the_steering_vector_at_a_different_position_


Finding Steering Vectors with ActAdd

Turner, A. M., Thiergart, L., Leech, G., Udell, D., Vazquez, J. J., Mini, U., & MacDiarmid, M. (2023). Activation addition: Steering language models without optimization. 



Demo Notebook

https://colab.research.google.com/drive/1swr9OVAtmAWM1FUvrm2610lx4LXcVKoJ?usp=sharing 

https://colab.research.google.com/drive/1swr9OVAtmAWM1FUvrm2610lx4LXcVKoJ?usp=sharing


Issues with activation addition 

➔ We will always find some vector with ActAdd, even if the feature does not necessarily exist within 

the LLM (i.e. the vector we get might not have anything to do with the feature we’re interested in). 

➔ There’s a lot of potential for confounding features

◆ E.g. If we have a lot of sentences about love, a lot of sentences about hate, we may have just 

found the positive/negative sentiment instead of love/hate. 

◆ E.g. If we have a bunch of famous husband/wife pairs. We may have just found the 

male/female direction vector instead of the spousal vector. 

➔ This also isn’t a very scalable method; finding each feature vector requires a lot of work to curate a 

large dataset with the desired properties. 



Issues with activation addition 

➔ We will always find some vector with ActAdd, even if the feature does not necessarily exist within 

the LLM (i.e. the vector we get might not have anything to do with the feature we’re interested in). 

➔ There’s a lot of potential for confounding features

◆ E.g. If we have a lot of sentences about love, a lot of sentences about hate, we may have just 

found the positive/negative sentiment instead of love/hate. 

◆ E.g. If we have a bunch of famous husband/wife pairs. We may have just found the 

male/female direction vector instead of the spousal vector. 

➔ This also isn’t a very scalable method; finding each feature vector requires a lot of work to curate a 

large dataset with the desired properties. 

➔ What can we use instead? 



Issues with activation addition 

➔ We will always find some vector with ActAdd, even if the feature does not necessarily exist within 

the LLM (i.e. the vector we get might not have anything to do with the feature we’re interested in). 

➔ There’s a lot of potential for confounding features

◆ E.g. If we have a lot of sentences about love, a lot of sentences about hate, we may have just 

found the positive/negative sentiment instead of love/hate. 

◆ E.g. If we have a bunch of famous husband/wife pairs. We may have just found the 

male/female direction vector instead of the spousal vector. 

➔ This also isn’t a very scalable method; finding each feature vector requires a lot of work to curate a 

large dataset with the desired properties. 

➔ What can we use instead? ... Sparse autoencoders! 



Sparse Autoencoders (SAEs) for Feature Learning

➔ Sparse autoencoders are trained to 

reconstruct their input data

➔ Trains on a combination of reconstruction 

loss and L1 loss which induces sparsity 

➔ This sparsity is important for finding the 

decomposable feature representations, thus 

reducing feature confounding

➔ We can train SAEs on lots of unsupervised 

text data and find multiple features at once, 

which addresses the scalability issue 

https://www.lesswrong.com/posts/CJPqwXoFtgkKPRay8/an-intuitive-explanation-of-sparse-autoencoders-for

https://www.lesswrong.com/posts/CJPqwXoFtgkKPRay8/an-intuitive-explanation-of-sparse-autoencoders-for


Sparse Autoencoders (SAEs) for Feature Learning

https://www.lesswrong.com/posts/CJPqwXoFtgkKPRay8/an-intuitive-explanation-of-sparse-autoencoders-for

LL
M

 A
ct

iv
at

io
ns

LLM
 A

ctivations

➔ Sparse autoencoders are trained to 

reconstruct their input data

➔ Trains on a combination of reconstruction 

loss and L1 loss which induces sparsity 

➔ This sparsity is important for finding the 

decomposable feature representations, thus 

reducing feature confounding

➔ We can train SAEs on lots of unsupervised 

text data and find multiple features at once, 

which addresses the scalability issue 

https://www.lesswrong.com/posts/CJPqwXoFtgkKPRay8/an-intuitive-explanation-of-sparse-autoencoders-for


SAEs can find highly interpretable features  

➔ Use auto-interpretability for learning what each feature corresponds to 

◆ Find out which inputs activate the feature highly and use an LLM to understand the 

common theme between all inputs 

➔ Learn a dictionary of {SAE feature: steering vector} using the decoder matrix 

Cunningham, H., Ewart, A., Riggs, L., Huben, R., & Sharkey, L. (2023). Sparse autoencoders find highly interpretable features in language models. 



Gemma Scope + Neuropedia API

➔ Gemma Scope: an open 

suite of sparse autoencoders 

for Gemma 2 9B and 2B

➔ Neuronpedia API: 

Interpretability API for 

various open source LLMs 

https://www.neuronpedia.org 

https://www.neuronpedia.org


Demo Notebook

https://colab.research.google.com/drive/1g_3A5XrWYfO1rcvMiKCrAI_nCaVTcFs6?usp=sharing 

https://colab.research.google.com/drive/1g_3A5XrWYfO1rcvMiKCrAI_nCaVTcFs6?usp=sharing


Using Feature Directions



Guided Generation

➔ Other common forms of controlling or steering generation include fine-tuning and 
prompt engineering

Data requirements Robustness to 
inputs

Requires internal 
access to model

Prompt engineering/ 
In-context learning

Low Low No

Activation steering Low High Yes

Fine-tuning High High Yes



Guided Generation

➔ Subramani et al. (2022) & Hernandez et al. (2023) employ steering vectors that are added to 

the forward pass of GPT-2 with the goal of modifying generation; the former found steering 

vectors like “love”, “hate”, etc. while the latter used steering vectors for fact-editing

➔ Merullo et al. (2023) observed the linearity of transformer representations; were able to find a 

steering vector for country capitals; the vector added to the residuals to convert Poland to 

Warsaw could be used to transform China into Beijing 

➔ Elhage et al. (2022) showed that Othello-GPT can be intervened on with linear activation 

vectors that represented to, in essence, represent “a black piece is here and not a white 

piece”. 



Guided Generation

➔ Turner et al. (2023) 

◆ Found multiple linear steering vectors including “love” (attention layer 6), “intent to 

praise” (attention layer 6), “conspiracy” (attention layer 23), “want to die” (attention layer 

10), “anger” (attention layer 20), and some odd ones like “talking about weddings” 

(attention layer 20), “Dragons live in Berkeley” (attention layer 15), and “the Eiffel tower 

is in Rome” (attention layer 24) 

◆ Found that adding embedding vectors isn’t as effective as adding steering vectors 

➔ Park et al. (2023) found language concepts that allow translation (English⇒French, 

French⇒German, French⇒Spanish, and German⇒Spanish)



Structure within LLMs

Park, K., Choe, Y. J., Jiang, Y., & Veitch, V. (2024). The Geometry of Categorical and Hierarchical Concepts in Large 
Language Models.



Structure within LLMs

Engels, J., Liao, I., Michaud, E. J., Gurnee, W., & Tegmark, M. (2024). Not All Language Model Features Are Linear. 



Auditing LLMs

➔ We can use these feature 
directions as linear probes 

➔ We project the activations of 
our input onto the direction 
vector and look at the 
magnitude of the resulting 
projection 

Park, K., Choe, Y. J., & Veitch, V. (2023). The linear representation hypothesis and the geometry of large language models. 

a = input 
b = feature direction 
|a1| = magnitude of the 
feature present in our 
input



Some Other Good Resources

➔ LessWrong blog: https://www.lesswrong.com/ 

➔ Transformer Circuits: https://transformer-circuits.pub/

➔ Neel Nanda’s blog: https://www.neelnanda.io/ 

https://www.lesswrong.com/
https://transformer-circuits.pub/
https://www.neelnanda.io/


Questions?



Appendix



Finding Steering Vectors with ActAdd

➔ Use a package like TransformerLens or baukit 

from baukit import Trace

layer_id = 5
module = model.layers[layer_id]
with Trace(module) as ret:

_ = model("Love")
act_love = ret.output
_ = model("Hate")
act_hate = ret.output

steering_vec = act_love-act_hate


